## Directorate of Public Instructions M. P. Bhopal National Achievement Survey – 2021 Practice Paper Subject - Maths Class – 10<sup>th</sup>

## **Instructions for Students:-**

- 1. This Booklet has 60 questions.
- 2. Students have 2 hours to answer these items.
- 3. Each questions have four options 1,2,3,4. Only one of them is correct.
- 4. You may do rough work on this Booklet.

Q.1 The roots of the equation  $ax^2 + bx + c = 0$  are

1. 
$$\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

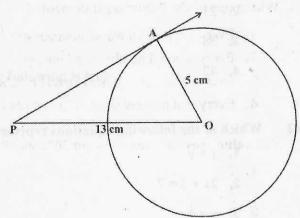
$$\frac{b \pm \sqrt{b^2 - 4ac}}{2c}$$
2. 
$$\frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$$
3. 
$$\frac{2a}{-b \pm \sqrt{b^2 - 4ac}}$$

Q.2 The mean of x-2a, x-a, x, x+a, x+2a is

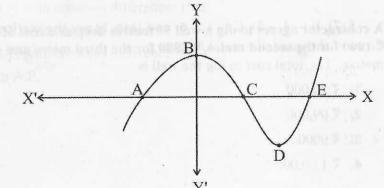
- 1. x
- **2.** 5*x*
- **3.** a
- **4.** not possible to find unless value of a is given

Q.3 Which one of the following statements is true?

- 1. Every integer is a whole number
- 2. Every rational number is an integer
- 3. Every irrational number is a real number
- 4. Every real number is an irrational number


Q.4 The value  $\cos 30^{\circ} \cdot \cos 60^{\circ} - \sin 30^{\circ} \cdot \sin 60^{\circ}$  is

- **1.** 2
- **2.** 1
- **3.** 0
- 4.  $\frac{3}{2}$


Q.5 If A (-5, 7), B (-4, -5), C (-1, -6) and D (4, 5) are the vertices of a quadrilateral, then the area of the quadrilateral ABCD is

- 1. 53 sq. units
- 2. 72 sq. units
- **3.** 27 sq. units
- **4.** 35 sq. units

- Q.6 If  $\frac{6}{5}$ , a, 4 are in A.P., then the value of a is
  - 1. 1
  - **2.** 13
  - 3.  $\frac{13}{5}$
  - 4.  $\frac{26}{5}$
- Q.7 Which term of the AP: 21, 42, 63, 84, ... is 210?
  - 1. 9<sup>th</sup>
  - 2. 10<sup>th</sup>
  - **3.** 11<sup>th</sup>
  - 4. 12<sup>th</sup>
- Q.8 In the given figure, PA is a tangent to a circle with centre O and radius 5 cm. If OP = 13 cm, then PA is equal to
  - 1. 8 cm
  - 2. 12 cm
  - 3. 13 cm
  - 4. 18 cm

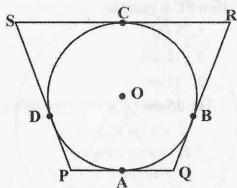


- Q.9 The number of zeroes of the polynomial p(x) represented by the graph is
  - 1. 1
  - 2. 2
  - **3.** 3
  - 4. 4

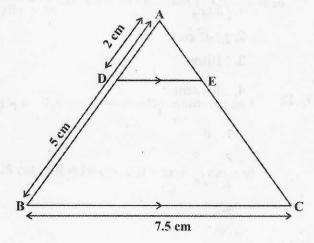


Q.10 If the roots of the equation

$$3x^2 - 4x + c = 0$$

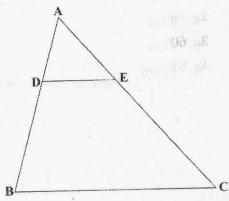

are equal, then the value of c is

- 1.  $\frac{3}{4}$
- 2.  $\frac{4}{3}$
- 3.  $\frac{9}{16}$
- 4.  $\frac{16}{9}$
- Q.11 In an A.P., if  $a_1 = 1$ ,  $a_n = 20$  and  $S_n = 399$ , then *n* is equal to
  - 1. 19
  - 2. 21
  - 3. 38
  - 4. 42
- Q.12 Which of the following equations represents a line parallel to x-axis?
  - 1. x = y
  - **2.** 2x + 3 = 7
  - 3. y = 4
  - 4. x = 3
- Q.13 A contractor agrees to dig a well 50 metres deep at a cost of ₹ 1000 for the first metre, ₹ 1040 for the second metre, ₹ 1080 for the third metre and so on for the subsequent metres. The total cost to dig the well is
  - 1. ₹.90,000
  - 2. ₹99,000
  - 3. ₹9000
  - 4. ₹1,00,000

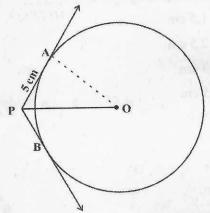

- Q.14 If x = 1 is a common root of the equations  $ax^2 + ax + 3 = 0$  and  $x^2 + x + b = 0$ , then the value of ab is
  - 1. 3
  - 2. 3.5
  - 3. 6
  - 4. -3
- Q.15 Which of the following is a zero of the polynomial  $x^5 x^3 + 2x 2$ ?
  - 1. 1
  - **2.** -1
  - 3. 2
  - 4. -2
- Q.16 If the pair of equations 4x + 5y = 2 and 12x + (p + 16) y = 6 has infinitely many solutions, then the value of p is
  - 1. 1
  - 2. -1
  - 3. 2
  - 4. -2
- Q.17 If  $\triangle ABC \cong \triangle PQR$ , then which of the following is true?
  - 1.  $B \leftrightarrow R$
  - 2. C ↔ O
  - 3.  $A \leftrightarrow R$
  - 4.  $A \leftrightarrow P$
- Q.18 If  $a_1, a_2, a_3$ , ... upto  $a_{21}$  are in A.P. with common difference d, then  $a_1, a_5, a_9, a_{13}$ 
  - 1. must be in A.P. with common difference 16 d
  - **2.** must be in A.P. with common difference d
  - 3. must be in A.P. with common difference 4 d
  - 4. may not be in A.P.

- Q.19 The median of the numbers 4, 15, 19, 21, 6 is
  - 1. 19
  - 2. 15
  - **3.** 15.5
  - 4. 17
- Q.20 The product of a non-zero rational and an irrational number is
  - 1. always irrational
  - 2. always rational
  - 3. rational or irrational
  - 4. one
- Q.21 AOB is a sector of a circle of radius 4 cm subtending an angle of 45° at the centre 'O' of the circle. Area of the sector, in cm<sup>2</sup>, is
  - 1. π
  - **2.** 2 π
  - 3.  $3\pi$
  - 4.  $4\pi$
- Q.22 The common difference of an A.P. in which  $a_{18} a_{14} = 32$  is
  - 1. 8
  - **2.** -8
  - 3. -4
  - 4 4
- Q.23 Rationalised form of the number  $\frac{1}{\sqrt{5} + \sqrt{2}}$  is
  - 1.  $\frac{\sqrt{5}+\sqrt{2}}{7}$
  - 2.  $\frac{\sqrt{5}-\sqrt{2}}{21}$
  - 3.  $\frac{\sqrt{5}-\sqrt{2}}{3}$
  - 4.  $\frac{\sqrt{5}-\sqrt{2}}{10}$

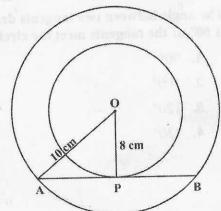
- Q.24 In the given figure, PQRS is a quadrilateral which circumscribes a circle with centre O. If PD = 4 cm, QB = 3 cm, RC = 6 cm and SD = 5 cm, then PQ is equal to
  - 1. 7 cm
  - 2. 8 cm
  - 3. 9 cm
  - 4. 10 cm




- Q.25 In the given figure, DE  $\parallel$  BC. If AD = 2 cm, AB = 5 cm and BC = 7.5 cm, then DE is equal to
  - 1. 1.5 cm
  - 2. 2.5 cm
  - 3. 3 cm
  - 4. 5 cm

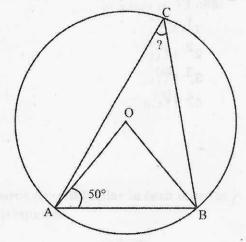



- Q.26 The angle between two tangents drawn from an external point to a circle with centre O is 50°. If the tangents meet the circle at P and Q, then ∠POQ is equal to
  - 1. 90°
  - 2. 100°
  - **3.** 120°
  - 4. 130°


- Q.27 In the given figure, DE  $\parallel$  BC.If AD = 5 cm, DB = 8 cm and AE = 7.5 cm, then EC is equal to
  - 1. 8 cm
  - 2. 12 cm
  - 3. 13 cm
  - 4. 15 cm



- Q.28 Two tangents PA and PB are drawn from an external point P to a circle with centre O such that  $\angle$ APB = 120°. If length of each tangent is 5 cm, then OP is equal to
  - 1. 5 cm
  - 2.  $5\sqrt{2}$  cm
  - 3. 10 cm
  - 4.  $10\sqrt{2}$  cm

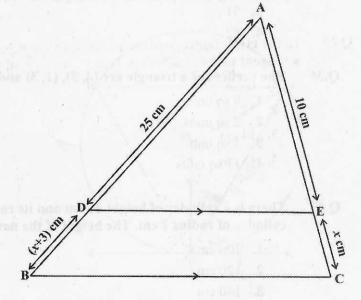



- Q.29 In the given figure, two circles of radii 10 cm and 8 cm have the same centre O. If AB is a tangent to the smaller circle at P, then length of AB is
  - 1. 6 cm
  - 2. 12 cm
  - 3. 14 cm
  - 4. 18 cm

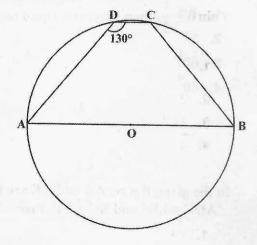


Q.30 In the given figure, O is the centre of the circle. If  $\angle OAB = 50^{\circ}$ , then  $\angle ACB$  is equal to

- 1. 40°
- 2. 50°
- **3**. 60°
- 4. 80°




Q.31 Given that  $\triangle ABC \sim \triangle PQR$  and  $\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = \frac{16}{25}$ . If AB = 20 cm, then PQ is equal to

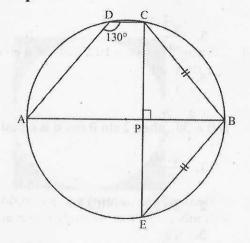

- 1. 10 cm
- 2. 15 cm
- 3. 20 cm
- 4. 25 cm

Q.32 In the given figure, DE || BC. If AD = 25 cm, AE = 10 cm, BD = (x + 3) cm and EC = x cm, then the value of x is

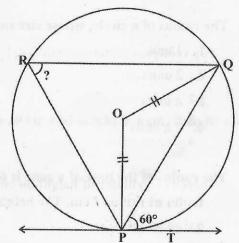
- 1. 2 cm
- 2. 3 cm
- 3. 4 cm
- 4. 5 cm



- Q.33 In the given figure, ABCD is a cyclic quadrilateral. If  $\angle$ ADC = 130°, then  $\angle$ CBA is equal to
  - 1. 40°
  - 2. 50°
  - 3. 80°
  - 4. 90°

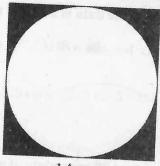



- Q.34 If angle between two radii of a circle is 140°, then the angle between tangents at the ends of the radii is
  - 1. 40°
  - 2. 70°
  - 3. 90°
  - 4. 140°
- Q.35 Mean of 100 numbers was found to be 50. But later on, it was observed that one of the number 150 was wrongly taken as 50. The correct mean is
  - 1. 49
  - 2. 50
  - 3. 51
  - 4. 52
- Q.36 The vertices of a triangle are (4, 5), (1, 3) and (6, 7). The area of the triangle is
  - 1. 9 sq units
  - 2. 2 sq units
  - **3.** 1 sq unit
  - 4. 12 sq units
- Q.37 There is a cylinder of height 30 cm and its radius is 14 cm. It is melted to form a new cylinder of radius 7 cm. The height of the new cylinder is
  - 1. 100 cm
  - 2. 120 cm
  - 3. 140 cm
  - 4. 150 cm


equal

ends

- Q.38 If  $\sin \theta = \frac{1}{2}$ , then  $\csc^2 \theta$  is equal to
  - 1.  $\frac{1}{4}$
  - 2. 2
  - 3. 1
  - 4. 4
- Q.39 In the given figure, AB and CE are two chords perpendicular to each other at P. If  $\angle ADC = 130^{\circ}$  and BC = BE, then  $\angle CBE$  is equal to
  - 1. 95°
  - **2.** 100°
  - **3.** 120°
  - 4. 130°




- Q.40 In the given figure, PT is tangent to the circle with centre O. If  $\angle$  QPT = 60°, then  $\angle$  PRQ is equal to
  - 1. 30°
  - 2. 45°
  - 3. 60°
  - 4. 80°



- Q.41 Of the four points P(-2, 2), Q(2, -4), R(-3, -4) and S(-5, -5), the point that lies in second quadrant is
  - 1. P
  - 2. Q
  - 3. R
  - 4. S
- Q.42 The value of  $\sin 30^{\circ} \cos 60^{\circ}$  is
  - 1. 1
  - 2.  $\frac{1}{2}$
  - 3.  $\frac{\sqrt{3}}{4}$
  - 4.  $\frac{1}{4}$
- Q.43 If  $\theta = 30^{\circ}$ , then  $2 \sin \theta \cos \theta$  is equal to
  - 1.  $\frac{\sqrt{3}}{2}$
  - 2.  $2\sqrt{3}$
  - **3**. √6
  - 4.  $\frac{2}{\sqrt{3}}$
- Q.44 The radius of a circle, whose circumference and area are numerically equal, is
  - 1. 1 unit
  - 2. 2 units
  - 3.  $\pi$  units
  - 4.  $2\pi$  units
- Q.45 The radius of the base of a cone is 6 cm and its height is 8 cm. Its curved surface area is
  - 1.  $36 \, \pi \, \text{cm}^2$
  - 2.  $48 \, \pi \, \text{cm}^2$
  - 3.  $60 \, \pi \, \text{cm}^2$
  - 4.  $72 \, \pi \, \text{cm}^2$

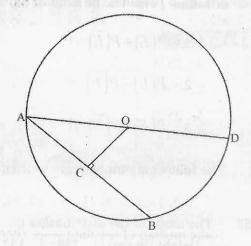
- A cube of side 6 cm is cut into a number of cubes, each of side 2 cm. Then the number of Q.46
  - 1. 9
  - 2. 18
  - 3. 27
  - **4.** 36
- In the given figure, a circle is inscribed in a square with side 14 cm. The area of the Q.47 shaded region is (Take  $\pi = \frac{22}{7}$ )
  - 1. 36 cm<sup>2</sup>
  - 2.  $42 \text{ cm}^2$
  - 3.  $56 \text{ cm}^2$
  - 4. 84 cm<sup>2</sup>



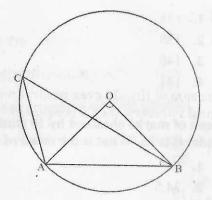
14 cm

- The radii of two cylinders are in the ratio 2:3 and their heights are in the ratio 5:3. Q.48 The ratio of their volumes is
  - 1. 10:27
  - 2. 20:9
  - **3.** 20:27
  - 4. 10:9
- If the diameter of a right circular cylinder is 10 cm and height is 4 cm, then its total Q.49
  - 1.  $40 \, \pi \, \text{cm}^2$
  - 2.  $65 \, \pi \, \text{cm}^2$
  - 3.  $90 \, \pi \, \text{cm}^2$
  - 4.  $120 \, \pi \, \text{cm}^2$

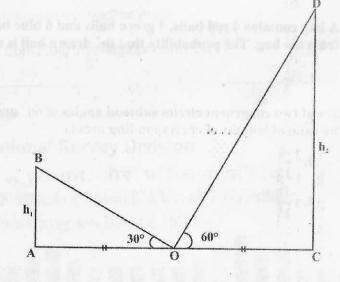
Q.55


Q.56

- Q.50 The side of a solid metallic cube is 44 cm. It is melted to form small spherical solid balls of radius 2 cm. The number of balls is (Take  $\pi = \frac{22}{7}$ )
  - 1. 2500
  - **2.** 2525
  - 3. 2541
  - 4. 2580
- Q.51 The following numbers are written in an ascending order


If the median of the data is 24, then the value of x is

- 1. 18
- 2. 19
- **3.** 20
- 4. 21
- Q.52 If the sum of first 20 even natural numbers is equal to k times the sum of first 20 odd natural numbers, then k is equal to
  - 1.  $\frac{1}{20}$
  - 2.  $\frac{19}{20}$
  - 3.  $\frac{21}{40}$
  - 4.  $\frac{21}{20}$
- Q.53 Arcs of two congruent circles subtend angles of  $60^{\circ}$  and  $20^{\circ}$  at their respective centres. The ratio of lengths of corresponding arcs is
  - 1. 2:1
  - 2. 1:3
  - **3.** 3:1
  - 4. 1:2


- Q.54 In the given figure, O is the centre of a circle of diameter AD = 34 cm. If AB = 30 cm and OC $\perp$ AB, then OC =
  - 1. 4 cm
  - 2. 8 cm
  - 3. 15 cm
  - 4. 17 cm



- Q.55 In the given figure, O is the centre of the circle. If  $\angle AOB = 90^{\circ}$  and  $\angle ABC = 30^{\circ}$ , then  $\angle CAB$  is equal to
  - 1. 90°
  - 2. 105°
  - 3. 120°
  - 4. 130°



- Q.56 In the given figure, AB and CD are towers of heights  $h_1$  and  $h_2$  respectively. O is the mid-point of AC. If AB and CD subtend angles 30° and 60° at O, then  $h_1: h_2 =$ 
  - 1. 2:1
  - **2.** 2:3
  - 3. 3:2
  - 4. 1:3



If  $P(\overline{E})$  denotes the probability of the event 'not E', then Q.57

$$1. \quad P(E) + P(\overline{E}) = 1$$

2. 
$$P(E)-P(\overline{E})=0$$
  
3.  $P(E)\times P(\overline{E})=1$ 

3. 
$$P(E) \times P(\overline{E}) = 1$$

$$\mathbf{4.} \quad P(\overline{E}) = 0$$

The mode of the distribution: Q.58

| Height (in cm)    | 130 | 132 | 135 | 138 | 140 | 141 | 150 |
|-------------------|-----|-----|-----|-----|-----|-----|-----|
| Height (III elli) | 100 |     |     | 12  | 0   | 0   | 5   |
| No. of students   | 3   | 5   | 7   | 13  | 9   | 0   | 3   |

is

- 1. 135
- 2. 138
- 3. 140
- 4. 141

Mean of marks obtained by 10 students is 32 and mean of marks obtained by another 5 Q.59 students is 35. What is the mean of marks obtained by all the 15 students?

- 2. 34.5
- **3**. 33
- 4. 33.5

A bag contains 4 red balls, 5 green balls and 6 blue balls. One ball is drawn at random Q.60 from the bag. The probability that the drawn ball is not green is

- 1.

## ANSWER KEY OF MATHEMATICS CLASS – X ENGLISH MEDIUM

| 1-3  | 11-3 | 21-2 | 31-4 | 41-1 | 51-3 |
|------|------|------|------|------|------|
| 2-1  | 12-3 | 22-1 | 32-1 | 42-4 | 52-4 |
| 3-3  | 13-2 | 23-3 | 33-2 | 43-1 | 53-3 |
| 4-3  | 14-1 | 24-1 | 34-1 | 44-2 | 54-2 |
| 5-2  | 15-1 | 25-3 | 35-1 | 45-3 | 55-2 |
| 6-3  | 16-2 | 26-4 | 36-3 | 46-3 | 56-4 |
| 7-2  | 17-4 | 27-2 | 37-2 | 47-2 | 57-1 |
| 8-2  | 18-3 | 28-3 | 38-4 | 48-3 | 58-2 |
| 9-3  | 19-2 | 29-2 | 39-2 | 49-3 | 59-3 |
| 10-2 | 20-1 | 30-1 | 40-3 | 50-3 | 60-2 |